This accident report summary is collated by the BMAA from information gathered. The information sources used are the Air Accident Investigation Branch of the Department for Transport (AAIB), the Civil Aviation Authority Mandatory Occurrence Reports (CAA MOR) and reports made directly to the BMAA by members and operators.

The individual reports within the accident summary are taken from the information available to the BMAA and where the BMAA has made comment this is clearly shown.

The BMAA does not investigate accidents and incidents, this role being the responsibility of the AAIB and the CAA who have the expertise, experience and funding for investigation.

All pilots reading the reports should try to make their own assessment of underlying causes and use the experience of others to enhance their own knowledge to help them become safer pilots.
Following a standard join and circuit for Runway 19, a glide approach was set up. The instructor reported that his student pilot under instruction initiated the flare, but there was no consequent reduction in the aircraft’s rate of descent. Despite pitching up further, and applying full power, the aircraft continued to descend and made heavy contact with the ground, damaging the nose section of the trike unit.

The wind at the time was reported as east-southeast at 5 to 7 kt, which placed the touchdown point on the runway downwind of adjacent farm buildings and a small copse. The instructor attributed the heavy landing to severe turbulence at low level.

BMAA Comment:

Obstructions up-wind of the landing area can have a significant effect on the speed and direction of the wind at the point where the aircraft is slowed for the landing phase. A good look from the overhead on arrival at the wind indications given by the windsock and then the terrain up-wind of the landing area can help predict where turbulence might lie. If there is a chance that turbulence might be present in the area where you plan to lose speed in the round-out and hold off consider a higher approach speed, later round out, powered approach or combination of all three. In all events be prepared to use the power to help maintain airspeed, right up until the aircraft has all the wheels on the ground and never be too proud to go-around and set up another approach. If you are visiting a new airfield a call asking for a briefing on local hazards can also help.
The student pilot was attempting a takeoff from Runway 28 at Peterborough Airfield. The forecast wind was 190° at 8kts; the pilot reported that the actual wind speed was higher. During the takeoff roll the aircraft veered left and pilot applied corrective right rudder but without effect. The aircraft departed the runway and was heading towards a fence. The pilot reduced power to abort the takeoff but the aircraft continued and struck the fence before coming to rest. The pilot was uninjured and exited the aircraft without difficulty. He assessed the cause of the accident as his incorrect use of controls in a crosswind.

BMAA Comment:

Student pilots make errors; otherwise they would no longer be students. It is unrealistic to expect that pilots of limited experience will be able to control an aircraft as well as an experienced pilot. Adequate margins for inexperience should always be considered when student flying is taking place.
BMAA Flight Event Report

Event Details

<table>
<thead>
<tr>
<th>Event type:</th>
<th>Accident</th>
</tr>
</thead>
</table>

Report Details

|---------------|------|-------------------|-----------------|-------------|-----------|

Aircraft Details

<table>
<thead>
<tr>
<th>Aircraft type:</th>
<th>Fixed wing</th>
<th>Aircraft model:</th>
<th>Ikarus C42 FB100</th>
<th>Flight phase:</th>
<th>Take off</th>
<th>Flight purpose:</th>
<th>Tuition</th>
</tr>
</thead>
</table>

Pilot Details

<table>
<thead>
<tr>
<th>Pilot's licence:</th>
<th>Microlight Instructor</th>
<th>PIC Total:</th>
<th>4538</th>
<th>PIC on type:</th>
<th>479</th>
</tr>
</thead>
</table>

Event Narrative

Whilst carrying out a training flight in the Ince Blundell airfield circuit, the instructor was informed by personnel on the ground that the left main landing gear structure appeared to have failed. After completing a low pass, the ground personnel confirmed the failure so the instructor declared a PAN and diverted to RAF Woodvale, where a successful landing was carried out. Examination of the aircraft confirmed that the left main landing gear axle had failed due to a previously unidentified crack, which had propagated in fatigue. The aircraft was used primarily for training from grass runways which, the owner believed, contributed to the crack formation and growth.

BMAA Comment

Given the situation the pilot handled the problem in a very sensible manner, deciding to divert to an airfield with a long runway and emergency services on site.
At the time of the accident Runway 03 was in use at Home Farm Strip, Ebrington, Chipping Campden, Gloucestershire and the wind was from 050° at 7 kt. Runway 03 is a grass runway cambered along its centreline and, as a result of recent heavy rain, the ground on the lower edges was softer then the centre of the strip.

After two hours of instructional flying the student pilot was briefed for a solo circuit. The takeoff, circuit and approach were uneventful. During the landing flare the left wing dropped and the aircraft drifted, uncorrected, towards the left hand edge of the strip. The main wheels touched down in the softer ground and dug in, causing the nose gear to touchdown heavily resulting in damage to it and the engine mounts. The pilot shut down and vacated the aircraft uninjured.

Instructor’s comments

The instructor commented that, in hindsight, he feels he should not have sent the student solo as the crosswind and condition of the runway were unsuitable.

BMAA Comment:

Student pilots make errors; otherwise they would no longer be students. It is unrealistic to expect that pilots of limited experience will be able to control an aircraft as well as an experienced pilot. Adequate margins for inexperience should always be considered when student flying is taking place. The instructor’s comments are probably very relevant.
Prior to departure the engine had been run to warm-up and then switched off. Passenger entered the aircraft. Attempt to restart the engine resulted in cabin fire, both occupants exited the a/c and the fire was extinguished.

BMAA Comment:

The AAIB were unable to determine the initiating cause of the fire. However pilot's are encouraged to adopt the starting and warm-up techniques described in the Operating Handbook. In particular, attention is drawn to the importance of adopting the correct technique when starting a warm engine to avoid overpriming with the choke which, in some engines, can potentially lead to backfires and provide an ignition source.
The pilot reported that, after about 20 m of the landing roll on Runway 21, the aircraft was caught by a gust of wind. The aircraft veered off the runway to the left, departing the paved surface at an angle of about 30°. The aircraft crossed a drainage ditch, which caused considerable damage to the nose landing gear area, before coming to rest on the paved surface of Runway 27. Following the accident the pilot estimated the average wind as southerly at 10 to 15 kt. He considered that the aircraft was affected by turbulence created by some nearby trees upwind of the area of the runway in which he touched down. He was unaware of this local effect.

Microlights are all affected by cross winds and turbulence in the landing phase. Approach airspeed and landing technique should be planned for the actual conditions each and every time you set up an approach. In difficult conditions care is needed to retain control and the unexpected should be expected. In addition, there is value in assessing an unfamiliar landing site from overhead to try and anticipate the effects of local terrain and buildings on wind conditions. Consider adjusting the touchdown point in light of these observations.
The pilot returned to the circuit after a local flight. He carried out an overhead join and was established on final approach at 600 ft agl. The surface wind was westerly at 10 kt and Runway 26 was in use. During the last part of the approach the pilot encountered some turbulence and as the power was reduced in the flare the aircraft dropped to the ground. The aircraft bounced twice and then stalled onto the nose landing gear, which collapsed.

BMAA Comment:

An early go-around decision may have helped and possibly a better approach/landing made in light of the turbulence experienced on the first approach. The power should not be reduced in the flare at a height above ground that would cause a problem to the aircraft. On some aircraft types the 'propeller wash' over the control surfaces provides increased control authority. The act of reducing power can therefore have a detrimental effect on control, which is particularly undesirable when close to the ground.
Whilst cruising at 2,000 ft the engine lost power. A forced landing was made in a furrowed field and as the aircraft came to a halt a fire broke out. The pilot, who was uninjured, exited the aircraft unaided. The aircraft was subsequently destroyed by the fire.

History of the flight
The pilot was flying at 2,000 ft on a local flight from Oxton airfield when the engine lost power, causing the aircraft to descend. There was a limited choice of fields suitable for a forced landing. The pilot selected a field and landed perpendicularly to the furrows. As the aircraft came to a halt, it caught fire. The pilot was able to exit the aircraft quickly but could do nothing to prevent the fire from spreading. He considered that the landing across the furrows might have caused a fuel pipe to detach, providing a source of fuel for the fire.

Discussion
The aircraft suffered an engine failure, something which pilots of single-engined aircraft are trained to anticipate. Typical advice for pilots for choosing a suitable field for a forced landing includes selecting a field that is well within gliding range, free from obstructions (particularly in the undershoot and overshoot areas) and with a suitable surface. The surface of the chosen landing field was less than ideal, but there was a limited choice of fields available to the pilot. There was insufficient evidence available to determine the cause of the loss of engine power.

BMAA Comment:
A loss of power it is always a nerve racking moment and even the best advice and most diligent training and practicing can be put to the back of the mind in the moment. In this instance the pilot should be congratulated for making a safe landing in the field that he chose and that he could walk away from the aircraft unharmed. The AAIB couldn't identify the cause of power loss or fire and it is not our place to speculate.
The pilot had performed a dual instructional flight with his instructor after which he was briefed for some solo circuits, which were not his first. After refuelling, the aircraft took off in benign weather conditions. During the first touch-and-go, the aircraft bounced three times. On the second and third bounces the aircraft struck the ground nosewheel first, with the third bounce being the most severe. The pilot performed a go-around and the instructor, through the tower, requested that he land after his next approach. The pilot subsequently completed what his instructor described as a “perfect landing”. The damage to the aircraft was not immediately apparent and was discovered after the aircraft returned to the apron. The pilot, wearing a full harness, sustained no injuries. He considered that the initial bounce was caused by insufficient pitch-up attitude during the flare.

BMAA Comment:

Student pilots make errors; otherwise they would no longer be students. It is unrealistic to expect that pilots of limited experience will be able to control an aircraft as well as an experienced pilot. We should be thankful that the aircraft sustained the damage with none to the pilot.
During flight, the pilot perceived that “something wasn’t quite right” with the aircraft’s engine, and decided to land to check the spark plugs and fuel system. He landed on a runway at Sculthorpe Airfield, which he believed was closed. Having inspected the engine and found nothing amiss, he took off again. At about 50 ft agl during the climb, the engine lost power and the pilot attempted to land straight ahead. During the landing the aircraft impacted on its nose and then fell onto its side, sustaining damage. The cause of the power loss was not determined.

Even if you don’t have cause to suspect an engine problem be prepared for a failure at any time. On take off use the correct attitude control so that a power loss will not result in inadequate airspeed for control and then choose an open area, generally ahead, to make the best touchdown that you can.
BMAA Flight Event Report

Event type:
Incident

<table>
<thead>
<tr>
<th>Report Source</th>
<th>Report reference</th>
<th>Event date</th>
<th>Aircraft type</th>
<th>Aircraft model</th>
<th>Flight phase</th>
<th>Flight purpose</th>
<th>Pilot’s licence</th>
<th>PIC Total</th>
<th>PIC on type</th>
<th>Pilot injuries</th>
<th>Passenger injuries</th>
<th>Aircraft damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMAA</td>
<td></td>
<td>Unknown</td>
<td>Fixed wing</td>
<td>SkyRanger 912</td>
<td>Ground</td>
<td>Pleasure</td>
<td>PPL SEP</td>
<td>750</td>
<td>20</td>
<td>None</td>
<td>Unknown</td>
<td>Severe</td>
</tr>
</tbody>
</table>

Narrative report from: Report to BMAA by pilot as received

While undertaking power checks and at idle the engine back fired and stopped. Smoke started to appear from the cowling and a fire ensued. Extensive fire damage to the engine compartment, windscreen and propeller.

BMAA Comment:

The AAIB were unable to determine the initiating cause of the fire. Pilot’s are encouraged to adopt the starting and warm-up techniques described in the Operating Handbook. In particular attention is drawn to the importance of correct engine handling during power checks to ensure the engine is up to specified temperatures and pressures before proceeding with idle and magneto/ignition checks. Wait for the engine to warm up before letting it idle.
BMAA Flight Event Report

<table>
<thead>
<tr>
<th>Event type:</th>
<th>Accident</th>
</tr>
</thead>
</table>

|---------------|------|------------------|----------------|-------------|-------------|

<table>
<thead>
<tr>
<th>Aircraft type:</th>
<th>Fixed wing</th>
<th>Aircraft model:</th>
<th>CTSW</th>
<th>Flight phase:</th>
<th>Cruise</th>
<th>Flight purpose:</th>
<th>Pleasure</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pilot’s licence:</th>
<th>NPPL</th>
<th>PIC Total:</th>
<th>136</th>
<th>PIC on type:</th>
<th>Most of Total</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pilot injuries:</th>
<th>Minor</th>
<th>Passenger injuries:</th>
<th>N/A</th>
<th>Aircraft damage:</th>
<th>Destroyed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Narrative report from:</th>
<th>AAIB Report as published</th>
</tr>
</thead>
</table>

Synopsis

The pilot made a forced landing in a tree after the engine stopped near Dundee. The investigation identified flight planning as a contributory factor. One Safety Recommendation is made.

Additional safety action

Following this accident, P&M Aviation declared their intention to publish a Service Letter which will explain the effects of aircraft attitude and turbulence on fuel feed at low fuel levels. In addition, it will point out that the minimum quantity that the fuel sight gauge will indicate is 3 litres. Finally, a placard will be required to be fitted to the aircraft advising the pilot that he or she must ensure that at least 1 cm of fuel is visible on both fuel contents sight gauges at all times.

For the full AAIB report please visit:

BMAA Comment:

This pilot conducted a long flight and possibly misunderstood the fuel consumption of his aircraft. On any flight pilots are advised to carry an adequate fuel reserve for possible changes in conditions, re-routing and other unexpected influences i.e. diversions. The subsequent forced landing demonstrates how good luck follows bad.